149 research outputs found

    An analysis on decentralized adaptive MAC protocols for Cognitive Radio networks

    Get PDF
    The scarcity of bandwidth in the radio spectrum has become more vital since the demand for more and more wireless applications has increased. Most of the spectrum bands have been allocated although many studies have shown that these bands are significantly underutilized most of the time. The problem of unavailability of spectrum and inefficiency in its utilization has been smartly addressed by the Cognitive Radio (CR) Technology which is an opportunistic network that senses the environment, observes the network changes, and then using knowledge gained from the prior interaction with the network, makes intelligent decisions by dynamically adapting their transmission characteristics. In this paper some of the decentralized adaptive MAC protocols for CR networks have been critically analyzed and a novel adaptive MAC protocol for CR networks, DNG-MAC which is decentralized and non-global in nature, has been proposed. The results show the DNG-MAC out performs other CR MAC protocols in terms of time and energy efficiency

    Remodeling of Retinal Fatty Acids in an Animal Model of Diabetes: A Decrease in Long-Chain Polyunsaturated Fatty Acids Is Associated With a Decrease in Fatty Acid Elongases Elovl2 and Elovl4

    Get PDF
    OBJECTIVE: The results of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications cohort study revealed a strong association between dyslipidemia and the development of diabetic retinopathy. However, there are no experimental data on retinal fatty acid metabolism in diabetes. This study determined retinal-specific fatty acid metabolism in control and diabetic animals. RESEARCH DESIGN AND METHODS: Tissue gene and protein expression profiles were determined by quantitative RT-PCR and Western blot in control and streptozotocin-induced diabetic rats at 3-6 weeks of diabetes. Fatty acid profiles were assessed by reverse-phase high-performance liquid chromatography, and phospholipid analysis was performed by nano-electrospray ionization tandem mass spectrometry. RESULTS: We found a dramatic difference between retinal and liver elongase and desaturase profiles with high elongase and low desaturase gene expression in the retina compared with liver. Elovl4, an elongase expressed in the retina but not in the liver, showed the greatest expression level among retinal elongases, followed by Elovl2, Elovl1, and Elovl6. Importantly, early-stage diabetes induced a marked decrease in retinal expression levels of Elovl4, Elovl2, and Elovl6. Diabetes-induced downregulation of retinal elongases translated into a significant decrease in total retinal docosahexaenoic acid, as well as decreased incorporation of very-long-chain polyunsaturated fatty acids (PUFAs), particularly 32:6n3, into retinal phosphatidylcholine. This decrease in n3 PUFAs was coupled with inflammatory status in diabetic retina, reflected by an increase in gene expression of proinflammatory markers interleukin-6, vascular endothelial growth factor, and intercellular adhesion molecule-1. CONCLUSIONS: This is the first comprehensive study demonstrating diabetes-induced changes in retinal fatty acid metabolism. Normalization of retinal fatty acid levels by dietary means or/and modulating expression of elongases could represent a potential therapeutic target for diabetes-induced retinal inflammation

    Genetic analysis of patients with Fuchs endothelial corneal dystrophy in India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in <it>COL8A2 </it>gene which encodes the collagen alpha-2 (VIII) chain have been identified in both familial and sporadic cases of Fuchs endothelial corneal dystrophy (FECD). Heterozygous mutations in the <it>SLC4A11 </it>gene are also known to cause late-onset FECD. Therefore we screened for <it>COL8A2</it>, <it>SLC4A11 </it>gene variants in Indian FECD patients.</p> <p>Methods</p> <p>Eighty patients with clinically diagnosed FECD and 100 age matched normal individuals were recruited. Genomic DNA was isolated from peripheral blood leukocytes. Mutations in <it>COL8A2</it>, <it>SLC4A11 </it>coding regions were screened using bi-directional sequencing. Fischer's exact test or Pearson's chi squared test were used to predict the statistical association of genotypes with the phenotype.</p> <p>Results</p> <p>Screening of <it>COL8A2 </it>gene revealed 2 novel c.1610G>A, c.1643A>G and 3 reported variations c.112G>A, c.464G>A and c.1485G>A. In <it>SLC4A11 </it>gene, novel c.1659C>T, c.1974C>T and reported c.405G>A, c.481A>C and c.639G>A variants were identified. However all the variations in both the genes were also present in unaffected controls.</p> <p>Conclusions</p> <p>This is the first study analysing <it>COL8A2 </it>gene in Indian patients with FECD. No pathogenic mutations were identified in <it>COL8A2</it>. Merely silent changes, which showed statistically insignificant association with FECD, were identified in the screening of <it>SLC4A11 </it>gene. These results suggest that <it>COL8A2</it>, <it>SLC4A11 </it>genes may not be responsible for FECD in patients examined in this study.</p

    Role of Mesenchymal Stem Cells on Cornea Wound Healing Induced by Acute Alkali Burn

    Get PDF
    The aim of this study was to investigate the effects of subconjunctivally administered mesenchymal stem cells (MSCs) on corneal wound healing in the acute stage of an alkali burn. A corneal alkali burn model was generated by placing a piece of 3-mm diameter filter paper soaked in NaOH on the right eye of 48 Sprague-Dawley female rats. 24 rats were administered a subconjunctival injection of a suspension of 2×106 MSCs in 0.1 ml phosphate-buffered saline (PBS) on day 0 and day 3 after the corneal alkali burn. The other 24 rats were administered a subconjunctival injection of an equal amount of PBS as a control. Deficiencies of the corneal epithelium and the area of corneal neovascularization (CNV) were evaluated on days 3 and 7 after the corneal alkali burn. Infiltrated CD68+ cells were detected by immunofluorescence staining. The mRNA expression levels of macrophage inflammatory protein-1 alpha (MIP-1α), tumor necrosis factor-alpha (TNF-α), monocyte chemotactic protein-1 (MCP-1) and vascular endothelial growth factor (VEGF) were analyzed using real-time polymerase chain reaction (real-time PCR). In addition, VEGF protein levels were analyzed using an enzyme-linked immunosorbent assay (ELISA). MSCs significantly enhanced the recovery of the corneal epithelium and decreased the CNV area compared with the control group. On day 7, the quantity of infiltrated CD68+ cells was significantly lower in the MSC group and the mRNA levels of MIP-1α, TNF-α, and VEGF and the protein levels of VEGF were also down-regulated. However, the expression of MCP-1 was not different between the two groups. Our results suggest that subconjunctival injection of MSCs significantly accelerates corneal wound healing, attenuates inflammation and reduces CNV in alkaline-burned corneas; these effects were found to be related to a reduction of infiltrated CD68+ cells and the down-regulation of MIP-1α, TNF-α and VEGF

    Study protocol for the recreational stimulation for elders as a vehicle to resolve delirium superimposed on dementia (Reserve For DSD) trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Delirium is a state of confusion characterized by an acute and fluctuating decline in cognitive functioning. Delirium is common and deadly in older adults with dementia, and is often referred to as delirium superimposed on dementia, or DSD. Interventions that treat DSD are not well-developed because the mechanisms involved in its etiology are not completely understood. We have developed a theory-based intervention for DSD that is derived from the literature on cognitive reserve and based on our prior interdisciplinary work on delirium, recreational activities, and cognitive stimulation in people with dementia. Our preliminary work indicate that use of simple, cognitively stimulating activities may help resolve delirium by helping to focus inattention, the primary neuropsychological deficit in delirium. Our primary aim in this trial is to test the efficacy of Recreational Stimulation for Elders as a Vehicle to resolve DSD (RESERVE- DSD).</p> <p>Methods/Design</p> <p>This randomized repeated measures clinical trial will involve participants being recruited and enrolled at the time of admission to post acute care. We will randomize 256 subjects to intervention (RESERVE-DSD) or control (usual care). Intervention subjects will receive 30-minute sessions of tailored cognitively stimulating recreational activities for up to 30 days. We hypothesize that subjects who receive RESERVE-DSD will have: decreased severity and duration of delirium; greater gains in attention, orientation, memory, abstract thinking, and executive functioning; and greater gains in physical function compared to subjects with DSD who receive usual care. We will also evaluate potential moderators of intervention efficacy (lifetime of complex mental activities and APOE status). Our secondary aim is to describe the costs associated with RESERVE-DSD.</p> <p>Discussion</p> <p>Our theory-based intervention, which uses simple, inexpensive recreational activities for delivering cognitive stimulation, is innovative because, to our knowledge it has not been tested as a treatment for DSD. This novel intervention for DSD builds on our prior delirium, recreational activity and cognitive stimulation research, and draws support from cognitive reserve theory.</p> <p>Trial registration</p> <p>ClinicalTrials.gov identifier: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01267682">NCT01267682</a></p

    Proceedings of the Third International Symposium on Retinopathy of Prematurity: An update on ROP from the lab to the nursery (November 2003, Anaheim, California)

    Get PDF
    The Third International Symposium on Retinopathy of Prematurity (ROP) was convened with the aim of cross fertilizing the horizons of basic and clinical scientists with an interest in the pathogenesis and management of infants with ROP. Ten speakers in the clinical sciences and ten speakers in the basic sciences were recruited on the basis of their research to provide state of the art talks. The meeting was held November 9, 2003 immediately prior to the American Academy of Ophthalmology meeting; scholarships were provided for outreach to developing countries and young investigators. This review contain the summaries of the 20 platform presentations prepared by the authors and the abstracts of presented posters. Each author was asked to encapsulate the current state of understanding, identify areas of controversy, and make recommendations for future research. The basic science presentations included insights into the development of the human retinal vasculature, animal models for ROP, growth factors that affect normal development and ROP, and promising new therapeutic approaches to treating ROP like VEGF targeting, inhibition of proteases, stem cells, ribozymes to silence genes, and gene therapy to deliver antiangiogenic agents. The clinical presentations included new insights into oxygen management, updates on the CRYO-ROP and ETROP studies, visual function in childhood following ROP, the neural retina in ROP, screening for ROP, management of stage 3 and 4 ROP, ROP in the third world, and the complications of ROP in adult life. The meeting resulted in a penetrating exchange between clinicians and basic scientists, which provided great insights for conference attendees. The effect of preterm delivery on the normal cross-talk of neuroretinal and retinal vascular development is a fertile ground for discovering new understanding of the processes involved both in normal development and in retinal neovascular disorders. The meeting also suggested promising potential therapeutic interventions on the horizon for ROP

    Prediction of diabetic retinopathy: role of oxidative stress and relevance of apoptotic biomarkers

    Full text link
    corecore